

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

FEASIBILITY STUDY OF A VISION-BASED LANDING
SYSTEM FOR UNMANNED FIXED-WING AIRCRAFT

by

Tyler B. McCarthy

June 2017

Thesis Advisor: Oleg A. Yakimenko
Second Reader: Fotis A. Papoulias

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2017

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
FEASIBILITY STUDY OF A VISION-BASED LANDING SYSTEM FOR
UNMANNED FIXED-WING AIRCRAFT

5. FUNDING NUMBERS

6. AUTHOR(S) Tyler B. McCarthy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Successful landing of an autonomous unmanned aerial vehicle requires a high degree of accuracy and
efficient, real-time processing. This research applies systems engineering concepts to investigate the
feasibility of applying computer vision techniques and visual feedback in the control loop for an
autonomous system. This thesis examines the framework and performance of an algorithm designed to
detect and track a runway in images captured from a camera onboard an aircraft during the final approach
and landing stages of flight. Using a series of image processing techniques to localize the runway and the
Hough transformation for line detection, the algorithm is capable of detecting the edges of a runway with
over 96 percent accuracy through 3000 test images. The operating conditions for this algorithm include
any scenario in which visual flight rules apply. Additionally, the system will perform with runways that
comply with Federal Aviation Administration regulations. Future applications of this algorithm should
include aircraft attitude and pose estimation as well as full integration into an autonomous aircraft control
system.

14. SUBJECT TERMS
autonomous systems, auto-land, computer vision, image processing, unmanned aerial vehicles

15. NUMBER OF
PAGES

93

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

FEASIBILITY STUDY OF A VISION-BASED LANDING SYSTEM FOR
UNMANNED FIXED-WING AIRCRAFT

Tyler B. McCarthy
Ensign, United States Navy

B.S., United States Naval Academy, 2016

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2017

Approved by: Oleg A. Yakimenko
Thesis Advisor

Fotis A. Papoulias
Second Reader

Ronald E. Giachetti
Chair, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Successful landing of an autonomous unmanned aerial vehicle requires a high

degree of accuracy and efficient, real-time processing. This research applies systems

engineering concepts to investigate the feasibility of applying computer vision techniques

and visual feedback in the control loop for an autonomous system. This thesis examines

the framework and performance of an algorithm designed to detect and track a runway in

images captured from a camera onboard an aircraft during the final approach and landing

stages of flight. Using a series of image processing techniques to localize the runway and

the Hough transformation for line detection, the algorithm is capable of detecting the

edges of a runway with over 96 percent accuracy through 3000 test images. The

operating conditions for this algorithm include any scenario in which visual flight rules

apply. Additionally, the system will perform with runways that comply with Federal

Aviation Administration regulations. Future applications of this algorithm should include

aircraft attitude and pose estimation as well as full integration into an autonomous aircraft

control system.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. VISION FOR UNMANNED AERIAL VEHICLES1
B. CURRENT STATE OF MANNED AND UNMANNED

AIRCRAFT LANDING PROCEDURES ..2
1. General Landing Procedures ..2
2. Assisted Landings...3
3. Current Autonomous Landing Capability4

C. VISION-BASED LANDING SYSTEM CONCEPT5
1. Control ..5
2. Image Processing ..6
3. Pose and Attitude Estimation ...6

D. RESEARCH QUESTION AND OBJECTIVES8
E. SCOPE, LIMITATIONS, AND ASSUMPTIONS8

II. DATA SAMPLES AND LITERATURE REVIEW ..11
A. DESCRIPTION OF AVAILABLE DATA ..11
B. LITERATURE REVIEW ...15
C. THESIS ORGANIZATION ..16

III. FRAMEWORK AND METHODOLOGY: PRE-PROCESSING19
A. THRESHOLDING DESCRIPTION AND PURPOSE.........................19

1. Description of Color Spaces ..20
2. Comparison of Color Spaces ...21
3. Applied HSV Threshold Limits ..23

B. MORPHOLOGICAL OPERATIONS ...25
1. Background and Purpose ..25
2. Erosion and Dilation ..25
3. Opening and Closing Operations ...27
4. Application in Runway Detection Algorithm28

C. IMAGE MASKING AND FILTERING ..31
1. Image Masking ...31
2. Image Filtering ...33

D. IMAGE SHARPENING ..35
1. Background, Description, and Purpose35
2. Application in Algorithm ..36

 viii

IV. FRAMEWORK AND METHODOLOGY: LINE EXTRACTION AND
ERROR CORRECTION...39
A. EDGE DETECTION ...39

1. Overview and Purpose ...39
2. Comparison of Edge Detection Techniques39
3. Application in Algorithm ..41

B. HOUGH TRANSFORM ...42
1. Background ..42
2. Application in Algorithm ..43

C. ERROR DETECTION AND ADJUSTMENT46
1. Detection Issues Using the Hough Transform46
2. False Runway Edge Detection Adjustment47

V. RESULTS AND ANALYSIS ..51
A. ACCURACY ..51
B. PROCESSING TIME ..54

VI. CONCLUSIONS ..57
A. REVIEW OF RESEARCH QUESTION ...57
B. CONCLUSIONS ..57
C. FUTURE WORK ...58

APPENDIX. HSV AND GRAYSCALE PROCESSING TIMES61

LIST OF REFERENCES ..63

INITIAL DISTRIBUTION LIST ...67

ix

LIST OF FIGURES

Figure 1. FLOLS System Onboard an Aircraft Carrier. Source: NAVAIR Fleet
Readiness Center Southwest (2003). ...4

Figure 2. Vision-Based Landing Control System ...6

Figure 3. Precision Instrument Runway and Markings in Accordance with
Federal Aviation Administration Standards. Source: FAA (2015).9

Figure 4. Aircraft and Camera Setup for Collection of Data. Source: Gloria
(2016). ..11

Figure 5. Long (left), Medium (middle), and Short (right) Range Approach
Images to Monterey Regional Airport ...12

Figure 6. Flight Path Represented in Latitude and Longitude Coordinate
Frame. Adapted from AirNav (2017). ...13

Figure 7. Altitude and Heading Flight Data ..13

Figure 8. Roll, Pitch, and Yaw Flight Data ...14

Figure 9. Speed Flight Data for GPS Speed (top) and Vertical Axis Speed
(bottom)..14

Figure 10. Roll, Tilt, and Pan (left) and Roll, Tilt, and Pan Rate (right) Flight
Data ..15

Figure 11. Conical Representation of the HSV Color Space20

Figure 12. Comparison of Narrow and Wide Intensity Threshold Margins for a
Grayscale Image ...22

Figure 13. Original Approach Images at Long, Medium, and Short Range24

Figure 14. HSV Threshold Images for Long, Medium, and Short Range24

Figure 15. Example of Dilation Operation with 30x30 Square Structuring
Element ..26

Figure 16. Example of Erosion Operation with 30x30 Square Structuring
Element ..26

Figure 17. Opening of an Image with 20x20 Square Structuring Element to
Eliminate Clutter ..27

x

Figure 18. Closing of an Image with 20x20 Square Structuring Element to Fill
Gaps ...28

Figure 19. Original and Thresholded Image for Use in Morphological Operation
Demonstration ..28

Figure 20. Image Produced after Executing “imfill” Function in MATLAB29

Figure 21. Image Produced after Executing “bwareaopen” Function in
MATLAB ...29

Figure 22. Image Produced after Executing Dilation with 10x4 Vertical
Structuring Element in MATLAB ...30

Figure 23. Image Produced After Executing Second Iteration of “imfill”
Function in MATLAB ...31

Figure 24. Image Mask of Binary Image and Median Filtered Runway Image32

Figure 25. Examples of Various Levels of Image Mask Accuracy32

Figure 26. Intensity Comparison for Unfiltered and Filtered Runway Images35

Figure 27. Demonstration of Unsharp Masking Using a Gaussian Blurred Image36

Figure 28. Comparison of Unsharpened and Sharpened Runway Image37

Figure 29. Vertical Sobel Operator (left) and Horizontal Sobel Operator (right)40

Figure 30. Comparison of Sobel Edge Detection (left) and Canny Edge
Detection (right) ...41

Figure 31. Sobel Edge Detection on Runway Images at Far, Medium, and Close
Ranges, Respectively ...42

Figure 32. Transformation from x-y Image Plane to ρ-θ Parameter Space43

Figure 33. Binary Input Image and Rho/Theta Hough Parameter Space44

Figure 34. Hough Space with Top Peaks Highlighted ..45

Figure 35. Runway Image with Hough-Detected Lines Overlaid46

Figure 36. Inaccurate Runway Edge Detection via the Hough Transform
Method ...47

Figure 37. Uncorrected (left) and Corrected (right) Versions of the Same
Runway Approach Frame ..50

 xi

Figure 38. First (left) and Last (right) Images Used for Algorithm Evaluation51

Figure 39. Accuracy Error Related to Altitude and Heading52

Figure 40. Maximum (left) and Minimum (right) Distance for Image Processing
Degradation ..53

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Specifications for TASE200 Camera. Adapted from Gloria (2016).12

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

DGPS differential global positioning system

DME distance measuring equipment

DOD Department of Defense

FAA Federal Aviation Administration

FLOLS Fresnel lens optical landing system

HSV hue, saturation, value

ILS instrument landing system

INS inertial navigation system

JPALS joint precision approach and landing system

RGB red, green, blue

UAS unmanned aerial system

UAV unmanned aerial vehicle

VFR visual flight rules

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

Research concerning autonomous vehicles and computer vision has expanded

rapidly, and the two fields are closely related. The use of autonomous unmanned aerial

vehicles (UAV) by the Department of Defense (DOD) has become a vital component of

national security with the most recent successes demonstrated by the RQ-4 Global Hawk

and the X-47B. Both of these aircraft are capable of autonomous takeoff, mission

execution, and landing. These systems use an intricate differential global positioning

system (DGPS) to collect accurate position estimates that allow for successful landings.

This research follows a systems engineering approach to evaluating the feasibility of

using computer vision and visual feedback techniques to control the aircraft in the final

approach and landing stages of flight. Specifically, this evaluates framework for an

algorithm to detect and track a runway from a camera onboard an aircraft. This thesis

offers an improvement to current vision-based runway detection frameworks such as

those made relevant by Shang and Zhongke (2011) in their paper titled, “Vision-Based

Runway Recognition for Autonomous Landing of a UAV.”

The first stages of image processing and detection use common pre-processing

techniques, the first being thresholding. While thresholding is usually applied to the

intensity of grayscale images, this research favors thresholding in the hue, saturation, and

value (HSV) color space. This allows the algorithm to localize the position of the runway

using chromaticity information as well as intensity information. The additional

information improves the performance of the algorithm and results in improved isolation

of the runway area and elimination of noise and clutter. The algorithm uses a hue

threshold between 0 and 0.440 and between 0.700 and 1.0 to eliminate color ranges in the

blue spectrum that easily coincide with the color of the sky. Additionally, the saturation

threshold is set between 0 and 0.2 and the value threshold is set between 0.637 and 1.0 to

capture the lighter and brighter runway markings.

Following HSV thresholding, a series of morphological operations are applied to

the image to eliminate clutter and noise while ensuring the entirety of the runway area is

captured. The first of the basic operations used is dilation, which increases the perimeter

 xviii

of a binary region in order to capture lost portions of the area within the region of interest

(MathWorks 2017). The second basic operation is dilation, which decreases the perimeter

of a binary region in order to eliminate clutter or unwanted areas (MathWorks 2017).

Together, these operations form the basis of all morphological tasks. The algorithm first

applies a filling operation, which dilates then erodes the image to fill holes in a region

and recapture lost information. The algorithm then applies an opening operation to

eliminate the noise and clutter in the image, specifically any grouping of pixels with a

perimeter smaller than 30 pixels. Finally, the image is dilated with a vertical, rectangular

structuring element to increase any portions of the runway region that may have been lost

in the previous operations. Upon completion, the algorithm applies a second filling

operation to ensure the remaining regions contain no unwanted gaps or holes. The result

of these morphological operations is a masked image that localizes the runway area and

eliminates as much noise and irrelevant area as possible.

To reduce noise in the image resulting from internal camera operations or the

environment, the algorithm filters the masked image to reduce the effects of Gaussian,

salt and pepper, and quantization noise. The median filter was chosen instead of the mean

filter or other techniques due to its robustness and edge preservation characteristics. As

Dangeti (2003, 18) describes in her research, median filtering samples a predetermined

window of pixels from the image and replaces the center pixel of interest with the median

intensity value.

In an additional attempt to preserve edges within each frame, the algorithm

sharpens the image using MATLAB’s “imsharpen” function with an edge radius of one

pixel. The algorithm uses a particular image sharpening technique, called unsharp

masking, which creates a Gaussian-blurred version of the original image and subtracts the

blurred copy from the original, resulting in sharper edges in areas that meet the

conditions of the system (Cambridge in Colour 2017). This process advantageously

produces edges that are sharply delineated and easier to detect in later stages of the

algorithm.

With a sharpened image, the pre-processing steps are complete and the algorithm

can successfully apply edge detection techniques. This research only compared

 xix

traditional edge detection methods because they are more computationally efficient while

maintaining a sufficient level of accuracy. In a comparison of the Sobel method and the

Canny method, the Sobel operator was the edge detection method of choice due to its

lesser processing time. The Sobel method uses a 3x3 operator that sums the gradient

values of orthogonal vectors resulting in a magnitude and direction value for a given

neighborhood of pixels (Sobel 2014). Within the algorithm, the Sobel operator captures

all edges within the image that meet a minimum threshold of 0.015, which was

determined through trial and error. The result is a binary image that only displays the

lines meeting the threshold set by the Sobel operator.

The application of the Hough transformation is the most important component of

the runway detection algorithm. Paul Hough first patented the Hough transform in 1962

as a means to detect patterns created by subatomic particles in a bubble chamber. The

Hough transform, as used today, transforms all points in the image frame in a new polar

parameter space. Within the parameter space, all points in an image frame correspond to

a sinusoid, points in the parameter space are straight lines in the image, and points on the

same line in the image frame will share a common point in the parameter space (Hart and

Duda 1972, 4). The algorithm applies the Hough transform to the edge-detected image

and searches for lines within the range of -35 and 35 degrees to match the expected

runway angle from the final approach perspective. The top 5–7 peaks in the Hough

parameter space are chosen and analyzed in order to determine the best match for the

runway edges. Typically, the top two peaks are the most likely matches; however, the

most prominent lines in the image will not necessarily coincide with the edges of the

runway. To avoid incorrect identification, the algorithm examines the resulting lines for a

number of common error scenarios. The first error check is the distance between points

on the runway edges. Any separation of less than 20 pixels indicates that the detected

runway edges are too close and that incorrect lines have been selected. Therefore, the

algorithm analyzes the next grouping of peaks in the Hough space. Conversely, if the

distance between runway endpoints is greater than 150 pixels in the x direction or 40

pixels in the y direction, the detected edges are too far apart and the algorithm signals a

line mismatch. Together, these test scenarios ensure that the detected edges fall within the

 xx

expected range for the runway geometry. Additionally, in real-time application, the

detected runway edges are averaged between image frames, achieving the effect of a low

pass filter. This limits the effect of mechanical vibrations on the camera and it reduces the

impact of slight errors within the algorithm.

The algorithm was tested on 3000 approach images to Monterey Regional Airport

taken from a TASE200 camera attached to the airframe of a Cessna 206 below the left

wing. Overall, the system achieved an accuracy of 96.2 percent across all images,

incorrectly identifying only 114 of the 3000 frames. The primary sources of inaccuracies

were distance extremes and misidentified clutter within the image. The algorithm

performs comparatively poorly at extremely long distances and extremely short distances.

At long distance, noise and blurring in the image make accurate detection of runway

markings difficult. At short distances, the aircraft is at very low altitudes, which distorts

the perspective of the runway and makes accurate detection more difficult. Noise and

clutter only become a problem in images when they align with one of the runway edges.

If clutter is close enough to the runway edge and large enough to pass through noise and

clutter elimination methods, it can be misidentified as a part of the runway edge. Outside

of these specific scenarios, the algorithm performs well. An original runway approach

image and its corresponding output from the algorithm are shown in Figure 1.

 Figure 1. Original Approach Image (left) and Algorithm Output (right)

Future applications of this algorithm could include attitude and pose estimation as

well as complete integration with an aircraft control system. Based on the performance of

the runway detection and tracking algorithm, it is evident that computer vision could play

a significant role in the navigation and control of autonomous UAVs. However, much

 xxi

work remains to integrate the algorithm with an aircraft’s control system. For one,

attitude and pose estimation must be applied to accurately estimate the position of the

aircraft. This information will play a crucial role in fulfilling the feedback control loop

within the control system of the aircraft. Overall, it is reasonable to expect that visual

feedback can play an important role in the future of autonomous aircraft.

References

Cambridge in Colour. 2017. “Sharpening using an Unsharp Mask.” Accessed April 19,
2017. http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm.

Dangeti, Sarita Veera. 2003. “Denoising Techniques—A Comparison.” Master’s thesis,
Louisiana State University. Accessed April 12, 2017.
http://etd.lsu.edu/docs/available/etd-1219102-
152426/unrestricted/Dangeti_thesis.pdf.

Duda, Richard O., and Peter E. Hart. 1971. “Use of the Hough Transformation to Detect
Lines and Curves in Pictures.” Communications of the ACM 15, no. 1 (January):
11–15. Accessed 17 April, 2017. http://www.dtic.mil/docs/citations/ADA457992.

Hough, P. V. C. 1962. Method and Means for Recognizing Complex Patterns. U.S.
Patent 3,069,654, filed March 25, 1960, and issued December 18, 1962.

MathWorks. 2017. “Morphological Dilation and Erosion.” Accessed May 15, 2017. The
MathWorks Inc. https://www.mathworks.com/help/images/ref/imfill.html.

Shang, Jiajia, and Zhongke Shi. 2007. “Vision-Based Runway Recognition for
Autonomous UAV Landing.” IJCSNS International Journal of Computer Science
and Network Security 7 no. 3: 112–117. Accessed April 7, 2017.
http://www.sciencedirect.com/science/article/pii/S1877705812021844.

Sobel, I., and G. Feldman. 1968. “An Isotropic 3x3 Image Gradient Operator.” Lecture,
Stanford Artificial Intelligence Project. Accessed April 19, 2017.
https://www.researchgate.net/publication/239398674_An_Isotropic_3_3_Image_
Gradient_Operator.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 xxiii

ACKNOWLEDGMENTS

I would first like to thank my mom, dad, brother, and sister for their unwavering

support, no matter the time or place. I would also like to thank all of my family and

friends for making the journey exciting and worthwhile along the way.

Special recognition goes to my advisor, Professor Oleg Yakimenko, for his steady

guidance and unending stream of knowledge to help me complete this thesis.

 xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The introduction presents the current state of unmanned aerial vehicles (UAV)

and auto-land procedures. This chapter will describe UAVs in a Department of Defense

(DOD) context while linking the goals of this research to DOD requirements for

autonomous systems. Additionally, the overall concept and objectives for a vision-based

landing system and the scope and limitations involved in the research are outlined.

A. VISION FOR UNMANNED AERIAL VEHICLES

Autonomous systems are fulfilling increasingly important and complex roles

within the DOD and foreign militaries across the globe. Not only are autonomous

systems capable of taking the warfighter out of dangerous situations, but they can operate

in diverse environments while accomplishing a versatile collection of missions. The DOD

Unmanned Systems Integrated Roadmap for FY2011–2036 (2011, 3) states, “DOD

envisions unmanned systems seamlessly operating with manned systems while gradually

reducing the degree of human control and decision making required for the unmanned

portion of the force structure.” Thus, the ideal autonomous system is one that can

accomplish its mission without any human intervention by making tactical or strategic

decisions without a human in the control loop. While the capabilities of unmanned aerial

systems (UAS) are increasing, they still require significant levels of human oversight and

external control inputs, usually via remote piloting at ground control stations. In order to

achieve increased autonomy in DOD systems, decision-making and control processes

must be integrated into the system itself. The advanced autonomous vehicle should be a

self-contained system capable of gathering information from its surroundings, processing

the information relative to its tactical scenario and mission, determining a course of

action, and acting on its decision without external human inputs.

The DOD Research and Engineering Technical Assessment on Autonomy (Office

of Technical Intelligence 2015, 4) encourages additional research into low-cost systems

capable of achieving autonomous “perception, cognition, and action.” The statement

implies an underlying intent to develop unmanned systems that fulfill a variety of

 2

dangerous and complex roles while doing so at a lower cost than current mission

execution levels. Achieving full autonomy in aerial vehicles is technologically

challenging and the solutions tend to be expensive. This research offers a method to

increase autonomy in UAVs via low-cost vision systems. While this research will focus

on aerial systems, the basic principles of vision-based control are applicable to all

autonomous systems in the DOD.

B. CURRENT STATE OF MANNED AND UNMANNED AIRCRAFT
LANDING PROCEDURES

This section provides a brief overview of both manned and unmanned aircraft

landing procedures. The first subsection focuses on general landing procedures while the

second and third subsections focus on the technical aspects of assisted and autonomous

landings.

1. General Landing Procedures

This research focuses on the stages of landing from final approach to touchdown

of the aircraft. Specific landing procedures will vary based on the size and aerodynamic

characteristics of the aircraft and environmental conditions; however, the Federal

Aviation Administration outlines a general approach to landing in its Airplane Flying

Handbook. The pilot reaches the final approach when the heading of the aircraft, given no

crosswind, is aligned with the center of the runway and the aircraft is following the

desired glide slope (Federal Aviation Administration [FAA] 2016a, 8.3). Throughout the

final approach, the pilot should make constant adjustments to align the aircraft with the

runway centerline, maintain the appropriate glide slope, and maintain the appropriate

airspeed via control inputs to the rudder, ailerons, elevators, flaps, and engine power

(FAA 2016a, 8.3-8.6). The pilot should aim for a predetermined touchdown point

throughout the final approach, typically delineated by two specific markings on either

side of the runway beyond the threshold (FAA 2016a, 8.10). A useful tool for the pilot in

achieving a consistent approach angle is to ensure that runway perspective remains the

same (FAA 2016a, 8.10). An elongated, narrow perspective indicates a steeper glide

slope while a flatter, shorter perspective indicates a shallow glide slope (FAA 2016a,

 3

8.10). This technique should be continuously applied until the pilot must flare the nose of

the aircraft and touchdown. The common theme throughout the landing process is that

visual cues are essential to maintaining an accurate final approach and completing a

successful landing. By using a vision-based landing procedure for autonomous systems,

the same general procedure applies.

2. Assisted Landings

A common and well-accepted landing navigation aid is the Instrument Landing

System (ILS). The system uses components called a localizer and a glide slope to provide

incoming aircraft with azimuth and elevation information for landing (FAA 2016b). The

localizer generates VHF signals that the incoming aircraft can translate into relative

positions left or right of the runway centerline (FAA 2016b). The glide slope station also

generates VHF signals that the incoming aircraft translates into elevation positions either

above or below a three-degree angle of descent (FAA 2016b). When carefully integrated

with runway markings and lighting, ILS becomes an integral tool for pilots.

Distance Measuring Equipment (DME) is another navigational aid that is often

integrated with ILS. DME stations at airports receive and relay radio signals from

incoming aircraft, which the aircraft’s DME equipment can then use to calculate distance

from the runway (FAA 2014). DME differs from localizer and glide slope stations

because it provides direct slant range between the runway and the aircraft rather than

azimuth and elevation information (FAA 2014).

Naval aviators use an improved version of the Fresnel Lens Optical Landing

System (FLOLS) as a navigation aid for landing onboard aircraft carriers (Golovcsenko

1976, 9–11). As with ILS, FLOLS provides the incoming aircraft with its position

relative to the center of the runway through a lighted reference station located at the edge

of the flight deck (Golovcsenko 1976, 9). The pilot sees a bar of light at the center of the

FLOLS station, when the bar is stationed above the green reference lights on either side,

the glide slope is too steep and when the bar is stationed below, the glideslope is too

shallow (Golovcsenko 1976, 9). The FLOLS is depicted in Figure 1.

 4

Figure 1. FLOLS System Onboard an Aircraft Carrier. Source: NAVAIR Fleet
Readiness Center Southwest (2003).

3. Current Autonomous Landing Capability

Few unmanned aerial vehicles can successfully takeoff and land autonomously.

Most notable are the RQ-4 Global Hawk and the X-47B, both produced by Northrop

Grumman. The RQ-4 Global Hawk is an operational unmanned aerial system designed

for intelligence, surveillance, and reconnaissance with over 200,000 operational flight

hours (Northrop Grumman 2017). The X-47B is an unmanned combat air system

(UCAS) created to test the feasibility of an autonomous carrier-based air platform

(Northrop Grumman 2015). Together, these aircraft represent the future of UAVs as used

by the U.S. military while leading the field in auto-land technology.

The autonomous landing process for both aircraft is similar. Both use differential

global positioning systems (DGPS) and inertial navigation systems (INS) to make

precision adjustments in the landing phase. DGPS uses a stationary radio transmitter in

addition to the four satellites necessary for a GPS fix, significantly increasing the

accuracy of the system (Defense Standardization Program 2010, 5). The Global Hawk

specifically uses dual KN-4072 INS/GPS onboard systems for guidance in the landing

stage (Loegering and Harris 2002, 2). Prior to takeoff and mission execution, the Global

 5

Hawk is loaded with a series of GPS waypoints for the landing sequence that guide the

aircraft to the runway and indicate when the aircraft should begin executing specific

landing procedures (Loegering and Harris 2002, 3). For example, a waypoint positioned

approximately 150 seconds from the point of touchdown indicates that the Global Hawk

should change speed to meet final approach requirements (Loegering and Harris 2002, 3).

Though not an exact replication, the X-47B utilizes a similar procedure that closely

mirrors the Joint Precision Approach and Landing System (JPALS). JPALS sea-based

systems, such as those used on aircraft carriers, implement a landing process similar to

that of the Global Hawk, but they also integrate data from a shipboard INS to account for

the continuous motion of the ship (Defense Standardization Program 2010, 6). This

additional layer of INS data allows incoming aircraft such as the X-47B to land with the

accuracy and precision required for carrier-based operations. DGPS-based systems, such

as those found on the RQ-4 and the X-47B, offer superior performance for autonomous

landings, but they add a significant level of complexity to the system.

C. VISION-BASED LANDING SYSTEM CONCEPT

Developing a vision-based landing system requires three central components: an

image processing algorithm, a pose estimation algorithm, and a control system integrated

with the unmanned aerial vehicle.

1. Control

The execution of the vision-based landing system will follow the framework for a

standard control loop, as shown in Figure 2. Error signals related to heading, altitude, and

speed will serve as inputs to the controller, which calculates corresponding outputs for

the aircraft control surfaces to achieve the desired state. In this case, the desired state is a

heading aligned with the center of the runway, a three-degree angle of descent, and

consistent approach speed. The resulting state of the aircraft following these control

actions will be measured and fed back into the controller via the vision-based system

established in the previous steps. The camera will capture an image of the runway, which

the pose estimation algorithm will then use to estimate the attitude and position of the

aircraft and consequently the error signal for the controller. The unmanned system will

 6

continuously execute the control loop until the aircraft safely lands. In Figure 2, ea, eh,

and es represent the altitude, heading, and speed error, respectively. Likewise, δe,	δr,	and	

δt	represent the required changes in elevator angle, rudder angle, and thrust, respectively.

Figure 2. Vision-Based Landing Control System

2. Image Processing

The image processing component of the vision-based landing system involves

detection and tracking of the runway in images taken from a camera onboard the aircraft.

The objective of the image processing component is to accurately identify and localize

the runway while distinguishing relevant markings and characteristics of the runway. The

various computer vision techniques that allow for the successful completion of this

step will be outlined in later chapters, as the image processing component is the focus

of this research.

3. Pose and Attitude Estimation

Pose and attitude estimation is the process of calculating the roll, pitch, yaw, glide

slope, and speed values for the aircraft. This is the stage in the vision-based landing

system in which the system gains situational awareness by analyzing runway information

provided by the previous image processing algorithm. Thus, the same visual cues used by

human pilots can be used by unmanned autonomous systems.

 7

a. Heading Error

Heading error is crucial to maintaining alignment with the centerline of the

runway in the final approach stage. The system can maintain proper heading by ensuring

that the internal angles of each edge of the runway are equal, assuming that the position

of the camera in relation to the center of the aircraft is known and that the aircraft is not

experiencing any sideslip. Equation 1.1 describes the relationship between internal

runway edge angles and the heading error.

 ()h l re f     (1.1)

In Equation 1.1, the theta values represent the left and right internal angles,

respectively, while the final value represents a function that adjusts for the sideslip angle

of the aircraft depending on the aircraft dynamics and external conditions.

b. Altitude Error

The algorithm should calculate altitude error as a ratio of the distant runway edge

to the leading runway edge, assuming that the length and width of the runway is known.

If the aircraft is maintaining a consistent glideslope through descent, the ratio will remain

the same. Larger or smaller ratios between the runway ends should trigger an error signal

in the system, as these conditions indicate the glide slope is either too shallow

or too steep.

c. Speed Error

Estimating speed from vision alone is a difficult task and it is not one that human

pilots can accurately complete. Therefore, it is reasonable to assume that some assistance

may be required from additional sensors, such as pitot tubes, in order to calculate

airspeed. Visual cues that may lend to the calculation of airspeed could include the

calculation of the rate of change of a known distance in the image frame, such as the

width of the runway.

 8

D. RESEARCH QUESTION AND OBJECTIVES

A capability need statement for future UAVs undoubtedly evokes the need to

create an accurate, robust, and cost efficient system that can successfully achieve a given

mission profile without human intervention. While achieving autonomy in aerial systems

is a multi-faceted issue, developing an improved autonomous landing capability remains

a critical issue for the future of unmanned systems. What is required is a systems

engineering approach to the development and assessment of autonomous landing

processes. While the RQ-4 and X-47B have demonstrated autonomous landing

capabilities, they are complex, expensive, and still require some degree of human

intervention. A critical component of systems engineering is the process of analyzing the

solution space to find the best approach to overcome a given problem. The process must

include trade-off and feasibility analysis to determine the best solution for all

stakeholders. This thesis uses a systems engineering approach to evaluate the feasibility

of a real-time, vision-based runway detection and tracking algorithm that will aid in the

landing of a fixed-wing UAV. As this is a complex problem, it requires in-depth analysis

and a fundamental understanding of the technical issues. This research must first explain

the framework and methodology for the vision-based landing system, then conduct

objective analysis of its performance and feasibility in future systems. Thus, this thesis

aims to provide a quantitative and qualitative analysis of a computer vision approach

intended to achieve an autonomous landing capability.

E. SCOPE, LIMITATIONS, AND ASSUMPTIONS

A satisfactory runway detection and tracking algorithm should be extremely

accurate so as to prevent false detection and, therefore, the passing of erroneous signals to

the aircraft control system. The algorithm should also be robust and reliable with the

ability to detect the location of the runway at long and short ranges, in all conditions

meeting visual flight rule (VFR) weather minimums as defined by the Federal Aviation

Administration (FAA), and through noisy image frames taken from live video onboard

the aircraft. Processing time must also be a consideration for eventual application in a

real-time environment. Fast processing times are often at odds with increased accuracy

 9

and robustness. Therefore, one must evaluate every aspect of the detection and tracking

process based on necessity and optimization.

The fields of unmanned autonomous vehicle research and computer vision are

vast, highlighting the importance of scope limitation for individual research projects. This

thesis focuses on autonomous fixed-wing aircraft. Size of the aircraft is not necessarily a

relevant factor so long as the characteristics of the aircraft do not call for special

considerations for control during the final approach and landing stages of flight.

Therefore, the results of the detection and tracking process for fixed-wing aircraft may

still be relevant to all unmanned aerial vehicles including rotorcraft.

While the computer vision algorithm should be robust for use on a wide variety of

runways, a few general assumptions are required. First, the runway markings used as

visual cues should abide by Federal Aviation Administration standards as outlined in AC

150/5340-1L also titled “Standards for Airport Markings.” Secondly, all runways should

have a centerline and side stripes for accurate detection. These are standard markings for

precision instrument runways. Lastly, there should be no obstacles or obstructions in line

of sight to the runway in the final approach stage of flight. A runway meeting all of these

assumptions is depicted in Figure 3.

Figure 3. Precision Instrument Runway and Markings in Accordance with
Federal Aviation Administration Standards. Source: FAA (2015).

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

II. DATA SAMPLES AND LITERATURE REVIEW

This chapter describes the data used for evaluation of the vision-based runway

detection and tracking algorithm. A complete literature review and thesis overview is also

included to provide reference frame for the reader.

A. DESCRIPTION OF AVAILABLE DATA

The images used for this research feature a final approach at Monterey Regional

Airport (MRY). The data was collected from a Cessna 206 airplane with a TASE200

camera attached to the airframe below the left wing. The setup is shown in Figure 4.

Figure 4. Aircraft and Camera Setup for Collection of Data.
Source: Gloria (2016).

The camera has a frame rate of 30 frames per second (fps) and this research used

3000 frames of the final approach video. The remaining characteristics of the TASE200

camera are shown in Table 1.

 12

Table 1. Specifications for TASE200 Camera. Adapted from Gloria (2016).

MECHANICAL SPECIFICATIONS
Diameter 4.4 inches

Height 7.5 inches
Weight 2.34 pounds

PERFORMANCE
Use Daylight and infrared imaging

Pan limits 360˚ continuous
Tilt limits +23˚/-203˚
IR camera Resolution:640x480; HFOV: 10.5˚

Daylight camera Optical zoom: 31x; HFOV:55.7˚-1.94˚

The images cover approximately one minute and 40 seconds of flight time in the

final approach to the runway at Monterey Regional Airport. The starting altitude is

approximately 1461.0 feet and the final altitude matches the elevation of Monterey

Regional Airport’s runway. The average airspeed throughout the descent was

approximately 94.5 knots. Samples of the runway images from long, medium, and short

range are shown in Figure 5.

Figure 5. Long (left), Medium (middle), and Short (right) Range Approach
Images to Monterey Regional Airport

The TASE200 system also collected INS and GPS metadata from the flight that

corresponds to each individual image frame. The GPS data from the final approach to

Monterey Regional suggests a relatively straight flight path, as shown in Figure 6. The

blue line represents the path of the aircraft while the red points represent the estimated

target area of the camera throughout the final approach.

 13

Figure 6. Flight Path Represented in Latitude and Longitude Coordinate Frame.
Adapted from AirNav (2017).

The system also captured altitude, speed, and attitude information from the

aircraft for each individual image frame. The altitude and heading data is shown in Figure

7. It is apparent that the aircraft follows a relatively stable rate of descent and maintains a

consistent heading. In Figure 7, the blue line represents the aircraft altitude and the red

line represents the altitude of the camera’s target.

Figure 7. Altitude and Heading Flight Data

 14

For future pose estimation evaluation, it will be important to consult the true roll,

pitch, and yaw data from the flight. This data is displayed in Figure 8, where the blue and

red lines represent the position of the TASE200 camera gimbal and mount, respectively.

Figure 8. Roll, Pitch, and Yaw Flight Data

Additionally, the TASE200 system collected speed data from the flight. The

corresponding information is shown in Figure 9. The top graph displays the aircraft speed

calculated using GPS data while the bottom graph shows speed relative to the vertical

axis of the body of the aircraft.

Figure 9. Speed Flight Data for GPS Speed (top) and
Vertical Axis Speed (bottom)

 15

Finally, it may be necessary to calculate transformations from the camera frame

to the aircraft body frame or the world frame. These calculations would require

information concerning the pose of the camera in each frame. This information is

displayed in Figure 10.

Figure 10. Roll, Tilt, and Pan (left) and Roll, Tilt, and
Pan Rate (right) Flight Data

B. LITERATURE REVIEW

Research in the fields of control theory and computer vision has resulted in a

number of methods recommended for real-time runway detection and tracking. This

section reviews previous research that provides the foundation for this thesis. Based on

these techniques and methodologies, this thesis seeks to improve detection and tracking

performance and present alternatives to improve accuracy or processing time. Broadly,

the relevant research areas include runway detection and tracking, pose and attitude

estimation, and control theory.

In “Vision-based Runway Recognition for UAV Autonomous Landing,” Jiajia

Shang and Zhongke Shi (2007) describe one of the most complete methods for runway

detection and implementation in an aircraft control system. Generally, Shang and Shi’s

methodology includes image preprocessing, runway area location, edge detection, and

runway edge determination. The preprocessing stage uses a 3x3 crisscrossing median

 16

filter, a standard and reliable image processing technique, to eliminate noise in the image

(Shang and Shi 2007, 112). The runway location stage uses a double grayscale threshold

technique that eliminates pixels below a predetermined threshold from an image, leaving

only those regions in the image that lie on the runway (Shang and Shi 2007, 113).

Grayscale thresholding reduces processing time because it only analyzes intensity

information. While quicker, it also eliminates hue and saturation information that might

contribute to the accuracy of detection. Shang and Shi chose to use the Sobel operator to

detect vertical and horizontal lines in the image for further processing (2007, 113). The

Sobel operator uses vector summations from a 3x3 neighborhood to gather gradient

information for each pixel (Sobel 2014). Following edge detection, Shang and Shi used

the Hough transform to find lines in the parameter space that correspond to the runway

edges (2007, 114). This process is well suited for accurate real-time detection of runway

edges and this thesis uses the general framework of this algorithm.

Other common runway detection methods involve matching real-time images to

templates of a runway to determine distance and position. This method is typically more

time intensive and prior images of the runway are required for successful detection and

tracking. While this technique may be feasible for UAVs that consistently use the same

runway for landings, it does not meet the requirement of robustness as previously

discussed in this chapter.

C. THESIS ORGANIZATION

As previously stated, this thesis specifically focuses on the image processing

component of the larger vision-based landing system, which aims to accurately detect and

track a runway in real time. The systems engineering feasibility analysis starts with a

complete description of the framework and methodology of the runway detection and

tracking algorithm in Chapter III. This chapter outlines the pre-processing steps necessary

to localize the runway and eliminate noise and clutter. Next, Chapter IV reviews the

chosen edge detection technique, the Hough transformation to identify the runway edges

within the image, and the error detection and correction methodology. Then, Chapter V

outlines the result of the feasibility analysis and includes a discussion of the algorithm’s

 17

performance. This thesis ends with Chapter VI presenting conclusions from this research

and outlines future work for autonomous landing system development.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

III. FRAMEWORK AND METHODOLOGY:
PRE-PROCESSING

This chapter describes the detailed pre-processing steps of the runway detection

algorithm. These steps include image thresholding, morphological operations, image

masking, and image sharpening. The algorithm was developed and executed in

MATLAB. Use of any predefined functions from the MATLAB image processing

toolbox is explicitly stated.

A. THRESHOLDING DESCRIPTION AND PURPOSE

Thresholding is the process of segmenting an image based on a specific

characteristic such as color or intensity (Cheng, Sun, and Wang 2011, 28). Thresholding

is a fundamental image processing technique because it is a simple and computationally

efficient way to focus on relevant areas while eliminating irrelevant regions.

Thresholding results in the isolation or elimination of a specific region within the image

for further processing. While grayscale intensity thresholding is a common technique, all

color spaces are can be used for thresholding but determination of the correct color space

requires trade-off analysis for accuracy and processing time.

The purpose of image thresholding for runway detection is twofold. First, it is the

initial step for localizing the runway within the given frame. With properly defined

thresholds, the algorithm should effectively highlight the area of interest, which is the

runway. Additionally, by highlighting the relevant areas of an image, thresholding should

save time in later stages of the algorithm by limiting the number of pixels processed

through more complex and computationally intensive steps. Based on the results of this

research, it is evident that thresholding often will play the greatest role in eliminating

noise and clutter from the image. While thresholding has the potential to eliminate large

unnecessary areas, it is still important to avoid elimination of important data within the

image when constructing the thresholding limits.

 20

1. Description of Color Spaces

Alvy Ray Smith introduced the HSV (hue, saturation, and value) color space in

1978. Smith (1978, 3) described hue as “the dimension with points on it normally called

red, yellow, blue-green, etc.,” saturation as “the departure of a hue from achromatic, i.e.,

from white or gray,” and value as “the departure of a hue from black.” Hue, saturation,

and value can describe colors in a more intuitive fashion. Smith (1978, 4) likened the

HSV color model to the process used by an artist to create his or her paint, where he or

she would choose a base color and add white or black paint in order to achieve the

desired saturation and value. Smith’s primary objective in creating the HSV color space

was to provide an alternative to the RGB (red, green, blue) color space, which was widely

used but difficult to conceptualize. A visual representation of the conical HSV space is

shown in Figure 11.

Figure 11. Conical Representation of the HSV Color Space

Electronic devices and monitors typically use the RGB color space to produce and

display images. While there are variations of the RGB model, they all use some

combination of red, green, and blue channels to create the full spectrum of colors. The

chromaticity of a color defines this red, green, and blue combination and the mixing

process is a close reproduction of how the receptors in the human eye process colors via

wavelength combinations (Joblove and Greenberg 1978, 20–21).

 21

Grayscale images eliminate all hue and saturation information, leaving intensity,

or value, as the only remaining characteristic. All pixels within a grayscale image

will therefore carry some value at or between the extremes of black and white. The

simplicity and intuitive nature of grayscale images make them popular for image

processing. Grayscale images also provide an advantage in processing speeds, as the

images will only contain one channel for intensity compared to three channels in the HSV

and RGB color space.

2. Comparison of Color Spaces

Determining the best color space for the thresholding process required a thorough

comparison based on accuracy and computation time metrics. The three options were the

RGB color space, the HSV color space, and intensity for grayscale images.

The RGB color space was eliminated early in the comparison process because

runway surfaces tend to include little variation in chromaticity, making it difficult to

achieve any degree of accurate thresholding using red, green, and blue channels. Red,

green, and blue channel thresholding is most effective when the target or area of interest

is a unique color and its particular combination of red, green, and blue allows for distinct

separation from the surrounding environment. Unfortunately, this is not the case for the

dark runway surfaces and white runway markings, which only fall at the extreme values

of the red, green, and blue channels. If anything, RGB analysis demonstrated the

importance of using multiple image characteristics for analysis rather than simply

chromaticity or intensity.

After comprehensive comparison, research and experimentation favored the HSV

color space over the grayscale color space. Implementation in the MATLAB environment

proved that the grayscale thresholding process is actually quite involved. The RGB color

space is the most common choice for image storage on electronic devices, so the

algorithm must first convert the image into the grayscale color space from the RGB

space. Following this conversion, each pixel in the image must undergo a gradient

calculation in order to determine the maximum and minimum intensity values for the

thresholding limits. It is possible to choose predefined threshold limits that do not use a

 22

relative gradient relationship, thus eliminating the need for the gradient operation.

However, this has a decidedly unacceptable effect on accuracy, as intensity changes

considerably with distance from the runway, environmental conditions, and noise.

Experimental results comparing HSV and grayscale thresholding times support the

conclusion that HSV thresholding is actually the superior method. A test of 30 trials

for each method determined that the difference between HSV and grayscale mean

processing times was 0.147 seconds ± 0.010 seconds in favor of the HSV color space (see

the Appendix for full results). Considering real-time requirements for the algorithm,

0.147 seconds is a significant difference.

The HSV color model was also the preferred choice in accuracy comparisons. The

inclusion of hue and saturation data in the thresholding process resulted in a more robust

controller that could accurately localize the runway region through a wider range of

distances, varying environmental conditions, and image noise levels. When only working

with intensity values, the user is limited to the manipulation of one channel for

thresholding. Wide ranges will eliminate noise and clutter but may result in the

elimination of relevant areas in the runway region. Narrow threshold ranges will include

all the relevant areas of the runway but increase noise and clutter in the output image.

The difference between these extremes is small but the results are drastically different, as

shown in Figure 12.

Narrow intensity threshold from 0.65 to 0.85 (left) compared to a wider intensity
threshold from 0.60 to 0.90 (right).

Figure 12. Comparison of Narrow and Wide Intensity Threshold Margins
for a Grayscale Image

 23

It is evident in Figure 12 that choosing threshold limits is a sensitive process. The

intensity ranges only varied by a value of 0.05 for the upper and lower limits, but the

results are dramatically different. Considering the uncontrollable factors that can affect

image intensity, relying on a single image characteristic to achieve robustness in the

thresholding process is challenging at best. In the HSV color space, the combination of

hue, saturation, and value channels adds redundancy in the thresholding process,

improving its resilience to variation due to uncontrollable factors. Therefore, HSV

thresholding was the more accurate method in almost all trials.

3. Applied HSV Threshold Limits

The most appropriate approach to determining the upper and lower HSV

threshold limits was through trial and error. The greatest challenge was finding limits that

worked at both long and short distances from the runway. Extensive analysis of 3000

frames of approach images to Monterey Regional Airport and incremental adjustments to

the upper and lower limits revealed the appropriate threshold range, as defined in

Equation 1.2.

Hue = (0 0.440) (0.700 1)

Sat = (0 0.200)

Val = (0.637 1)

h h

s

v

    
 

 
 (3.1)

The hue range includes all portions of the color wheel except those in the blue to

cyan range. Excluding these hues is an efficient way to eliminate clutter and noise

commonly resulting from the sky. Future applications in aircraft control may use the sky

and the horizon line as aids to determine attitude and elevation, but these aspects are

irrelevant to the runway localization and detection process.

The saturation limits range from 0.00 to 0.200 because runway markings are

always white or light gray, which correspond to lower saturation values. The runway and

taxi surfaces are made from concrete and asphalt, which will generate lower saturation

values in images, thus aiding the localization process. This tends to create contrast with

the surrounding environment, which usually includes saturated colors found in trees,

grass, and other common airport environments.

 24

The value limits favored brighter colors that highlight the white runway markings.

For runways with black asphalt surfaces, the distinction between the markings and the

runway surface is clear, making value thresholding even more useful. The distinction

between markings and the surface is less clear on runways with lighter concrete surfaces,

which slightly dilutes the effect of value thresholding.

Thresholding effectiveness is lowest at either extreme, both long and short, with

performance at mid-range proving to be the most accurate. A comparison of long,

medium, and short-range thresholding is illustrated in Figures 13 and14.

Figure 13. Original Approach Images at Long, Medium, and Short Range

Figure 14. HSV Threshold Images for Long, Medium, and Short Range

There is a large deviation in the results of the thresholding process. In some cases,

thresholding will only capture the runway markings. In other cases, it will capture the

entire runway as well as portions of the environment surrounding the runway. Both

scenarios are acceptable as long as the thresholding process generally localizes the

runway and eliminates large portions of unnecessary information from the image. Ideally,

the resulting binary image will only include the runway markings on and around the

runway, but an exact solution at all ranges and in all environments is impossible to

 25

achieve. The next step, which applies morphological operations, will work to normalize

the result of the thresholding process.

B. MORPHOLOGICAL OPERATIONS

This section provides a brief description of the purpose of morphological

operations and an overview of the primary operations and functions used in the

algorithm.

1. Background and Purpose

Morphology aids in the identification and analysis of shapes within an image

(Dougherty and Lotufo 2003). The objective of image processing is often to identify or

preserve some boundary, area, or region, which makes morphology invaluable to the field

of computer vision. Some of the first uses of morphology date back to experimentation

by Kirsch, Cahn, Ray, and Urban (1957), in which computer code completed several

image pre-processing steps, removing humans from time-intensive operations. From

those foundations, the process and purpose behind morphology largely remains the same.

In the context of this research, the purpose of morphology is to further localize the

runway area and capture the outline of the runway and any markings on the surface.

2. Erosion and Dilation

The two basic morphological operations are erosion and dilation. Traditionally,

algorithms use these operations on binary images to identify shapes and regions more

accurately. Working with binary images also decreases complexity as matrix operations

only include ones and zeros.

Dilation is the process of enlarging a shape or region within an image by

expanding the boundary of that shape (MathWorks 2017i). The number of pixels used to

enlarge the region depends on the structuring element used in the dilation process

(MathWorks 2017i). For MATLAB functions, the dilation rule states, “the value of the

output pixel is the maximum value of all the pixels in the input pixel’s neighborhood”

where the output pixel and neighborhood pixels are determined by the shape and size of

the structuring element (MathWorks 2017i). Dilation can recapture portions of an image

 26

that may have inadvertently been lost in pre-processing steps. An example of two shapes

dilated by a 30x30 square structuring element is shown in Figure 15.

Figure 15. Example of Dilation Operation with 30x30 Square Structuring Element

Erosion is the contrasting morphological operation, where the boundary of a

region is reduced, thus shrinking the area of the shape (MathWorks 2017i). In this

scenario, the minimum value within a neighborhood of pixels defined by a structuring

element determines the value of the output pixel (MathWorks 2017i). Erosion eliminates

noise and unwanted clutter in an image. An example of the erosion operation with a

30x30 pixel square structuring element is shown in Figure 16.

Figure 16. Example of Erosion Operation with 30x30 Square Structuring Element

 27

3. Opening and Closing Operations

Opening and closing operations combine the erosion and dilation processes to

improve the image while preserving the shape and boundary of the objects of interest.

This is specifically useful when the objective is elimination of noise and clutter.

The opening operation is the sequential application of erosion followed by

dilation. Erosion will eliminate smaller, unwanted binary regions and dilation will restore

the region of interest to its original size. An example of clutter elimination is shown in

Figure 17, with a square structuring element used to preserve the square shape of the

region of interest.

Figure 17. Opening of an Image with 20x20 Square Structuring Element
to Eliminate Clutter

Closing involves the sequential application of dilation and erosion. The most

common use for the closing operation is to remove gaps or holes in a region of interest. A

simple example of this application is illustrated in Figure 18, where a 20x20 square

structuring element fills gaps in a rectangular region.

 28

Figure 18. Closing of an Image with 20x20 Square Structuring Element to Fill Gaps

4. Application in Runway Detection Algorithm

For demonstration purposes, a final approach image taken approximately

37 seconds from touchdown will demonstrate the result of morphology in the context of

this algorithm. The original image and thresholded image are shown in Figure 19.

Figure 19. Original and Thresholded Image for Use in Morphological Operation
Demonstration

The first operation was a filling operation available in MATLAB’s image

processing toolbox labeled “imfill” (MathWorks 2017a). The function acts as a closing

operator, filling in gaps or spaces in enclosed regions within a binary image. The result of

this step is illustrated in Figure 20.

 29

Figure 20. Image Produced after Executing “imfill” Function in MATLAB

With all holes filled in the binary regions of the image, the next step is to

eliminate noise and clutter. An opening operation is used to eliminate the smaller clusters

of pixels that passed through the threshold process but do not contribute to runway

localization. MATLAB’s “bwareaopen” function, also included in the image processing

toolbox, was used to accomplish this task (MathWorks 2017b). This function uses the

opening operation to eliminate pixels below a defined threshold area. The runway

detection algorithm uses an area threshold of 30 pixels for the opening operation, which

was determined through a process of trial and error. Thirty pixels will eliminate most

noise but retain all areas on or near the runway. The final product of the “bwareaopen”

operation is shown in Figure 21.

Figure 21. Image Produced after Executing “bwareaopen” Function in MATLAB

 30

It is apparent in Figure 21 that some of the markings on the runway surface

were lost in the morphology process. This is acceptable because the primary objective

is to identify the runway edges and later stages of image processing can recapture

lost features.

Dilation is the next morphological operation applied to the binary image. The

objective of this final step is to recapture any area of the runway that were lost or

eliminated in previous steps. The dilation operation uses a vertical, rectangular

structuring element, as runway markings and components are typically vertically oriented

rectangles. The result of this process is illustrated in Figure 22.

Figure 22. Image Produced after Executing Dilation with 10x4 Vertical
Structuring Element in MATLAB

Ideally, dilation will capture the complete outline of the runway with no breaks or

gaps, as shown in Figure 22. However, the algorithm will occasionally fail to capture

every portion of the runway edge and surface. A robust design and redundancy

throughout the algorithm will allow later steps to either correct the mistake or overcome

the lack of data.

The final operation is a second iteration of the “imfill” function, which refines the

morphology output (MathWorks 2017a). If the algorithm identifies the entire perimeter of

the runway without gaps or breaks, the second filling operation will fill the interior

 31

surface of the runway, an added benefit for the creation of an image mask. The result of

the second iteration of the “imfill” function is shown in Figure 23 (MathWorks 2017a).

Figure 23. Image Produced After Executing Second Iteration
of “imfill” Function in MATLAB

C. IMAGE MASKING AND FILTERING

This section covers the masking and filtering steps in the runway detection

algorithm. Included are descriptions of each process, the purpose and justification for

each step, and a brief overview of the types and sources of noise common to images.

1. Image Masking

Image masking is a process that captures a desired portion of an image while

setting all other background pixels in the image to zero, or black. For the runway

detection algorithm, the resulting binary image from the morphology process serves as

the mask for the original runway image. Filtered sections of the original runway image

will replace any white sections of the binary image that remained after thresholding and

all morphological operations. In other words, image masking merges the binary image

with the filtered version of the original image. This concept is best illustrated by Figure

24, in which the final masked image is displayed.

 32

Figure 24. Image Mask of Binary Image and Median Filtered Runway Image

Aside from a few areas of clutter, the final product should include the runway

region with as many markings visible on the surface as possible. An accurate image

mask will lead to improved edge detection and line detection via the Hough transform at

later stages.

Naturally, the algorithm will not always work perfectly and portions of the

runway will be missing from the final image mask. However, this should result in failure.

Even with partial data, the algorithm can achieve accurate detection of the runway edges.

Designing a robust detection algorithm requires that varying degrees of accuracy must be

acceptable at the image mask stage. Multiple examples of less accurate image masking

results are shown in Figure 25. All of these images successfully resulted in accurate

runway detection. At minimum, the image mask should at least include the edges of the

runway, from start to finish, without breaks.

Figure 25. Examples of Various Levels of Image Mask Accuracy

 33

2. Image Filtering

Image filtering is a pre-processing technique to eliminate noise in an image. There

are a number of approaches to filtering, each effective at handling various levels and

types of noise. Choosing an appropriate filter involves analyzing the type of noise

affecting an image and determining acceptable computation time. Specifically, this

research considered the effects of three types of noise: Gaussian, salt and pepper, and

quantization noise.

Gaussian noise is random additive noise that follows a Gaussian distribution and

affects all pixels in an image (Dangeti 2003, 6). Internal components and processes of the

camera, such as amplification, typically introduce Gaussian noise (Patidar, Gupta,

Srivastava, and Nagawat 2010, 46). Due to its pervasiveness, all image processing

algorithms should account for Gaussian noise.

Salt and pepper noise is a series of intensity spikes that randomly affect an image

(Dangeti 2003, 7). The affected pixels will assume either a maximum or a minimum

value as a result of malfunctions in the sensors of the camera or errors in the analog-to-

digital conversion process (Dangeti 2003, 7). The name is derived from the salt and

pepper spikes that are evident in the final image as the noise results in either white or

black pixels. Again, salt and pepper noise is a common issue in image processing and

computer vision so efforts should be made to reduce its effects.

Quantization noise occurs during image compression, which is required for JPEG

images. The final approach images used for this research were stored in JPEG format in

order to store a vast quantity of images; therefore, quantization error was a concern. The

conversion process compressed 8x8 blocks of pixels resulting in the loss of information

and a subsequent blocking effect in the image (Quijas and Fuentes 2014, 1). The more the

image is compressed, the more apparent the blocking effect (Quijas and Fuentes 2014, 1).

There are many image filtering techniques available and the techniques grow in

number and complexity as the field of image processing advances. This research

considered two filtering methods, the mean filter and the median filter. These time-tested

and proven techniques provide solutions to a number of image processing issues and they

 34

are relatively simple in application. Effectiveness and computation time were the

evaluation factors for each filter.

The mean filter averages the intensity values of a predefined window of pixels

and replaces the center pixel, the pixel of interest, with that average value (Dangeti 2003,

12). This results in a smoothing or blurring effect across the image that eliminates

random noise. The result depends on the severity of the noise as well as the size of the

chosen filter. Larger filters will result in more smoothing or blurring (Dangeti 2003, 12).

Median filtering works in much the same way but it is a nonlinear process

(Dangeti 2003, 18). The median filter also uses a predetermined window size to evaluate

neighboring pixels, but the median value from the neighborhood replaces to center pixel

of interest (Dangeti 2003, 18). This also has a blurring effect on the image. The

advantages of the median filter are twofold. First, it is more robust in the sense that it

eliminates outliers, as is true of any process that uses medians instead of means (Dangeti

2003, 19). Many also argue that the median filter is better suited for edge preservation

because it must use the value of an actual pixel from the neighborhood (Dangeti 2003,

19). As there is not much difference between computation time for the mean and median

filter, these advantages make it the better choice for application in the runway detection

algorithm. Runway edge detection is the primary goal, so edge preservation should be a

valued characteristic for a filter.

To reduce processing time, median filtering should apply only to the image mask,

so only select regions of the image require computation. However, selective application

of the filter is difficult and time intensive in MATLAB, so the algorithm filters the full

original image prior to masking for proof of concept. The result of applying the

“medfilt2” MATLAB function for a 3x3 neighborhood is shown in Figure 26

(MathWorks 2017c). The filter reduced noise levels within the image at limited expense

to the runway edges and markings. An unfortunate consequence of median filtering is

that the algorithm must first convert the original image to a grayscale image because it

only filters pixel intensity values, thus adding additional computation time. Again, real-

time application should only apply median filtering to the required areas of the image

mask; this section only models the result of filtering due to constraints in MATLAB.

 35

Figure 26. Intensity Comparison for Unfiltered and Filtered Runway Images

D. IMAGE SHARPENING

Image sharpening is yet another fundamental operation in image processing. This

section provides a brief overview and background of the process, its purpose in the

context of edge detection, and its formal application in the algorithm.

1. Background, Description, and Purpose

Image sharpening is a technique used to improve detail within an image,

particularly textures and edges. Unsharp masking, a common sharpening technique,

intentionally blurs the original image, usually through Gaussian blurring, and subtracts

the blurred copy from the original image (Cambridge in Colour 2017). MATLAB

sharpening functions allow the user to control the radius of the Gaussian filter as well as

the threshold for determining edges. A larger radius will affect a larger area around edges

and higher thresholds will only apply the filtering effect to stronger lines within the

image (MathWorks 2017d). If the unsharp masking process identifies an edge that meets

the threshold, the filter sharpens the edge by an amount defined by the user. This

“amount” setting affects the acuteness of edges, which is a measure of edge transition

from dark to light (Cambridge in Colour 2017). Higher acuteness leads to a sharper

transition, hence the name of the operation. An application of unsharp masking is

demonstrated in Figure 27, where an image was intentionally blurred with a Gaussian

filter and sharpened using MATLAB’s “imsharpen” function from the image processing

toolbox (MathWorks 2017d).

 36

Gaussian blurred image (top left), sharpened image (top right), magnified view of blurred
image edge (bottom left), and magnified view of sharpened image edge (bottom left).

Figure 27. Demonstration of Unsharp Masking Using a Gaussian Blurred Image

The unsharp masking process uses the intensity values of an image, but the output

image can be in both color and grayscale. The function will simply convert the image

between color spaces to meet the requirement. Figure 27 shows an ideal image

sharpening process, with an edge between a perfect white background and a perfect black

object. Real application of unsharp masking will almost never meet these ideal conditions

but the process is still effective. For the runway detection algorithm, image sharpening is

necessary because edge preservation is crucial for final application of the Hough

transform. Without clear, defined edges, the edge detection process and resulting Hough

transform calculation will not be accurate. The filtering process, while necessary,

introduces additional blur to the image that sharpening can reduce. Although median

filtering preserves edges to some extent, image sharpening refines all the major edges

within the image and prepares the processed image for the final stages of runway

recognition and detection.

2. Application in Algorithm

The objective of image sharpening in the context of the detection algorithm is to

increase edge sharpness for lines on the runway while limiting the sharpening effect for

 37

all other irrelevant areas. Variation of the radius, threshold, and amount inputs will

achieve this objective. Ideal sharpening will only affect a small area around the edge of

interest, so a smaller radius is ideal. The default radius of 1 pixel was used because it is

an agreed upon standard and experimentation with lower and higher values yielded no

improvement. Low thresholds will capture unnecessary details and textures within an

image but excessively high thresholds will not effectively sharpen any edges. The

thresholding and morphology steps executed prior to sharpening have eliminated most of

the unnecessary regions in the image. For this reason, the algorithm uses a threshold limit

of zero, accepting introduction of some noise as a result. The amount must be sufficient

to highlight the edges within an image but not so high that the overshoot between the

light and dark transitions of the line becomes unnatural or counterproductive to detection

(Cambridge in Colour 2017). Through trial and error, the amount argument was set to 5,

which significantly increased the sharpness of the runway edges without unnatural

distortion in the image. The final product is shown in Figure 28.

Figure 28. Comparison of Unsharpened and Sharpened Runway Image

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

IV. FRAMEWORK AND METHODOLOGY: LINE EXTRACTION
AND ERROR CORRECTION

This chapter describes the edge detection methods and line extraction functions

specifically chosen to identify the runway edges within an image. It includes a complete

analysis and comparison of relevant edge detection methods as well as a detailed

overview of the Hough transformation process.

A. EDGE DETECTION

Edge detection is the final step before applying the Hough transform and

calculating the position of the runway edges. This section provides a brief overview of

edge detection, its purpose, and the various techniques used for edge detection. Also

included are a comparison of methods and the justification for use of the Sobel operator.

1. Overview and Purpose

In a study and comparison of various edge detection techniques, Maini and

Aggarwal (2009, 1) describe edge detection as “the process of identifying and locating

sharp discontinuities in an image.” These discontinuities are the points at which the

intensity of an image changes, indicating the start or end of an edge (Maini and Aggarwal

2009, 1). The general approach to edge detection involves convolving a square operator

with an image that detects these discontinuities and returns a binary image displaying all

detected edges (Maini and Aggarwal 2009, 1). Gradient operators work by detecting the

maximum and minimum values of the derivative of intensity values while Laplacian

detection uses the second derivative to detect edges (Maini and Aggarwal 2009, 2).

Laplacian methods are inherently more computationally intensive and adversely affect

real-time detection, so this research ignores Laplacian methods in favor of gradient

operators.

2. Comparison of Edge Detection Techniques

With the elimination of Laplacian methods, the two most popular gradient

methods, the Sobel operator and the Canny algorithm, remain. The Sobel method

 40

convolves a 3x3 gradient operator, shown in Figure 29, with the original image (Sobel

2014). The gradient operator sums the gradient values of orthogonal vectors resulting in a

magnitude and direction value for a given neighborhood (Sobel 2014). The user can

therefore detect lines along a specific gradient, usually broadly categorized as horizontal

or vertical, as well as lines of a certain magnitude. At the time of its inception, the Sobel

operator was notable for its performance with other available edge detection techniques

and its superior computation time. Developments in edge detection over the years have

led to its new label as a traditional and simple edge detection technique, but the Sobel

method still merits widespread attention and application in the image processing field.

More involved than the Sobel method, the Canny method is actually a combination of a

several processes. It vastly increases accuracy while maintaining an acceptable level of

complexity. The algorithm achieves three objectives as outlined by Canny: low-error rate,

accurate localization, and a single response to each edge (Maini and Aggarwal 2009, 6).

The general process for the Canny method is as follows: application of a Gaussian filter,

convolution with a gradient operator, calculation of gradient magnitude and direction,

line thinning via non-maximum suppression, and hysteresis to eliminate any gaps in the

edge (Maini and Aggarwal 2009, 6–8).

Figure 29. Vertical Sobel Operator (left) and Horizontal Sobel Operator (right)

The Sobel and Canny methods share many of the same advantages and

disadvantages. They are popular because they are simple to use and they can each capture

edge direction and magnitudes. However, both are somewhat inaccurate and less robust

than more complex edge detection techniques. When comparing the two methods, the

Sobel operator is more computationally efficient, whereas the Canny method is more

41

accurate. Determination of the appropriate method depends on the trade-offs between

advantages and disadvantages and the role and scope of edge detection in the greater

system. The Sobel operator was the favorable method in this research for its simplicity

and computational efficiency. Many of the steps taken in the Canny method were

unnecessary due to previous image processing steps. For example, the Gaussian filter

applied by the Canny method would be redundant and it would undo many of the

favorable effects of the sharpening process. The difference between the two methods is

best illustrated by their outputs, which are displayed in Figure 30. Each method was

implemented in MATLAB with a vertical filter and threshold set to 0.015.

Figure 30. Comparison of Sobel Edge Detection (left)
and Canny Edge Detection (right)

3. Application in Algorithm

The algorithm used Sobel edge detection via MATLAB’s “edge” function from

the Image Processing toolbox. This function allows the user to specify the edge detection

technique as well as a series of input arguments including threshold, direction, and

thinning (MathWorks 2017e). The threshold for the Sobel operator was set to a

magnitude of 0.015. Through trial and error, the author determined that this value

performed best at all ranges. The direction was set to vertical, which executed

convolution with the vertical Sobel operator. For final approach images, the runway

direction should align with the vertical axis of the frame. Resulting binary images from a

variety of ranges are shown in Figure 31.

 42

Figure 31. Sobel Edge Detection on Runway Images at
Far, Medium, and Close Ranges, Respectively

B. HOUGH TRANSFORM

This section provides a brief background to the invention and development of the

Hough transform, ultimately leading to its importance in the modern field of computer

vision. Also included is an explanation of the transformation process and its application

in the runway detection algorithm.

1. Background

Paul Hough first introduced the concept of the Hough transform as a means to

detect patterns created by subatomic particles in a bubble chamber (Hough 1962, 3). The

motivation behind the Hough transform was to reduce the amount of time required to

analyze photographs of the particle by allowing machines to analyze the pictures and find

patterns (Hough 1962, 3). This motivation makes this process well suited for analyzing

runway approach images in real-time. Hough’s patent describes a plan to transform

points in a Cartesian plane into the slope-intercept parameter space in which intersection

points would correspond to lines in the Cartesian plane (Hough 1962, 3). If the objective

of image analysis is line or pattern detection, the Hough space makes the process much

less time intensive. Patterns of interest become points of intersection in the Hough space,

reducing what would normally be a complex and time-intensive search of the Cartesian

plane.

Richard Duda and Peter Hart (1972, 2) improved the Hough transform by using

polar coordinates to describe points in the parameter space via Equation 1.3.

 co sinsx y    (4.1)

 43

This eliminates the possibility of undefined or infinite slopes in the slope-

intercept plane (Duda and Hart 1972, 1). The transformation to the polar parameter space

is illustrated in Figure 32. Hart and Duda (1972, 4) were also able to establish the

following rules for the transformation: all points in an image frame correspond to a

sinusoid, points in the parameter space are straight lines in the image, and points on the

same line in the image frame will share a common point in the parameter space. This

improvement to the Hough transform makes it extremely applicable in image processing

and computer vision. Undefined lines in the parameter space become a non-issue and

image processing algorithms need only to find peaks in the Hough space to identify lines

in the image plane. The more sinusoids intersecting at a single point, the stronger the

peak, and the longer and more defined the edge or line. Most computer vision algorithms

use Hart and Duda’s adaptation of the Hough transform.

Figure 32. Transformation from x-y Image Plane to ρ-θ Parameter Space

2. Application in Algorithm

The Hough transform is the optimal process for identifying runway edges in an

image. Considering its objective, the Hough transform is relatively efficient and it offers

value in a real-time detection environment. The key to further reducing computation time

is to limit the number of edges detected by the Sobel operator. Any clutter or excess lines

 44

will only degrade accuracy and add to computation time. This is why the thresholding,

morphology, and sharpening steps are so crucial to improving accuracy and efficiency.

The Sobel edge detected image serves as the input to the Hough transform

process. As with most processing steps, binary images with clear delineations between

edges and limited noise provide accurate results. The “hough” command in MATLAB

will perform the Hough transform, using the binary image as the input and producing a

matrix that describes the Hough space with rho and theta values (MathWorks 2017f). For

added accuracy and error reduction, the search of the image plane and the resulting

Hough space is limited to theta values between -35 and 35 degrees. This means that the

lines the Hough transform seeks to detect are vertical lines, with extra room to allow for

variations in aircraft position relative to the runway in the final approach stage. The

parameter space and the associated binary input image are shown in Figure 33. Each

sinusoid corresponds to a pixel in the binary image and all possible lines passing through

that image from -35 degrees to 35 degrees.

Figure 33. Binary Input Image and Rho/Theta Hough Parameter Space

A cursory glance at the Hough space will indicate a few likely intersection peaks

corresponding to lines in the image plane. Points of specific interest are located near the

negative 25-degree mark and the 25-degree mark in Figure 33. For the runway edges, two

responses of similar magnitude but opposite angles are indications of an accurate match.

If the aircraft is lined up with the center of the runway, the angles made by both edges of

 45

the runway will be the same magnitude. In fact, these runway angles can aid in the

estimation of aircraft roll positions. These peak intersection points are highlighted by

yellow boxes in Figure 34 by using the “houghpeaks” command in MATLAB

(MathWorks 2017g). This command is useful because it allows the algorithm to focus on

a predetermined number of peaks. The two peaks with the largest number of intersections

are most likely the runway edges, but this may not always be the case. For this reason, it

is a good practice to analyze the top 5–7 peaks in the image, depending on the amount of

noise and clutter.

Figure 34. Hough Space with Top Peaks Highlighted

For the example shown in Figure 34, the top two peaks do correspond to the

runway edges, but to prove this, the algorithm must convert the points back to lines in the

image frame. To do this, the MATLAB function “houghlines” uses the peaks returned

from the “houghpeaks” function to extract the appropriate rho and theta values that the

function then into x–y plane values (MathWorks 2017h). Overlaying the resulting Hough

 46

lines on the original runway image proves that the lines do accurately correspond to the

runway edges, as shown in Figure 35.

Figure 35. Runway Image with Hough-Detected Lines Overlaid

Using a binary image collected via the Sobel method, the Hough transform can

accurately detect the edges of a runway. The remaining challenge lies in correcting error

and implementing the visual feedback in a control system.

C. ERROR DETECTION AND ADJUSTMENT

Error adjustment is critical to the success of the runway detection algorithm. If the

algorithm is to be used in a real-time environment, it must achieve a high degree of

accuracy. This section describes the process used to detect and correct errors within the

algorithm.

1. Detection Issues Using the Hough Transform

The algorithm, as described in the previous sections, is robust; however, it will

not provide total accuracy in all final approach scenarios. Attempting to pinpoint runway

edges from a camera attached to a vibrating, high-speed vehicle is an inherently complex

process. Issues are plentiful and experimentation with thousands of frames of final

approach images exposed some of these problem areas.

 47

As previously stated, the accuracy and speed of the Hough transform depends on

the accuracy of the preceding steps of the algorithm. If thresholding and morphology can

remove clutter and capture the entirety of the runway, then the Hough transformation

becomes much simpler and more accurate. However, often the environmental conditions

and image noise levels make detection much more difficult and simple operations such as

thresholding, morphological opening, and closing are not suited nor were they designed

to handle such complex scenarios. Therefore, noise and clutter in the input binary image

are inevitable. Distance and environmental conditions that negatively affect visual range,

such as clouds or fog, are common sources of these issues.

Even in ideal conditions, the Hough transform can provide false outputs.

Combinations of noise and pixel alignment may result in peaks in the Hough transform

that do not correspond to any edge or runway line at all. This example is illustrated in

Figure 36. Clutter and noise in the center of the runway caused the algorithm to fail to

identify the right runway edge. For unavoidable situations like this, added error detection

and correction is required. The challenge lies in reproducing human-like error corrections

in an automated process.

Figure 36. Inaccurate Runway Edge Detection via the Hough Transform Method

2. False Runway Edge Detection Adjustment

The algorithm tests for a series of conditions to ensure that the identified edges

are correct. The first condition tests the proximity of the runway endpoints for both the

right and left edges. Although the distance between these points will vary depending on

 48

image resolution and distance from the runway, the algorithm defines a “no closer than”

distance that indicates one or both of the edges are incorrectly identified. This “no closer

than” distance is 20 pixels or less in the positive or negative x-direction. This distance

represents half the distance between the runway edges in the image taken at the farthest

point in the final approach of the aircraft. Therefore, there is no scenario in which the

distance between runway edges should be any smaller. However, this value will also

depend on camera properties such as resolution and stored image size so variation based

on equipment and operating conditions is acceptable.

The second error scenario tests for distances between the runway endpoints that

are too large. The algorithm considers any distance between the far runway endpoints

greater than 150 pixels in the x-direction or 40 pixels in the y-direction as too large. The

largest distance between the far endpoints in any frame on the final approach data was

100 pixels, so a value of 150 is provides a reasonable buffer. The far runway endpoints

are the best choice for distance evaluation because there is less fluctuation in their

separation compared to the closer runway endpoints. The separation between the runway

start points can vary from 50 pixels at long distances to nearly 350 pixels near

touchdown. The far runway endpoints simply provide a narrower range and reasonable

values for error testing.

The algorithm begins by assuming that the top two peaks in the Hough space

represent the runway edges. If any of the previous error conditions are satisfied, the

algorithm revisits the Hough space and analyzes the top six Hough peaks to find the

correct runway lines. The system then compares the top Hough peak to the remaining

four peaks and tests the runway endpoints for the same error scenarios. When the

algorithm identifies two lines that meet the given conditions, these become the identified

runway edges for the frame. If no matches are found, the algorithm simply chooses the

top two peaks and accepts the error, assuming that later error correction steps will limit

the impact. The system does not conduct a more extensive search of the Hough space

because it would result in unacceptable increases in computation time. Unfortunately, this

means that the algorithm might have to accept a certain level of error in the process.

 49

An added layer of error correction comes in the form of averaging. As the

algorithm detects the runway endpoints, it stores the values in a matrix that holds the

previous 15 values. When enough points are stored in the matrix, the algorithm averages

the current endpoint positions with the previous values. This limits the effect of any

errors that made it through the previous endpoint-checking stage. It also smooths the data

to limit small disturbances. It is important to remember that the camera collecting the

data is attached to the wing of the aircraft, which is exposed to mechanical vibrations and

turbulence from the environment. This inherent shaking is visible in sequential viewing

of the approach frames. The motion of the aircraft results in noticeable changes in

endpoint position. Smoothing the data will be essential in a control system environment.

Averaging acts as a low pass-filter, which eliminates small fluctuations that will

negatively affect the performance of the aircraft control surfaces. If the control system

receives constantly fluctuating position data from the runway detection algorithm, the

control surfaces in the aircraft will also constantly fluctuate. Depending on the aircraft

characteristics and flight dynamics, this fluctuation can reasonably result in a failure to

land. Therefore, averaging frames is a good practice for future applications of the

algorithm. Additionally, the camera captures images at 24 frames per second, so the

algorithm is averaging the data in intervals shorter than one second. This should still

provide a quick enough update rate to suit the control surfaces of the aircraft.

The matrix used to store runway data also allows the system to compare

corresponding endpoint positions between frames. In other words, if the algorithm

identifies a runway edge in which any of the points significantly differs from that of the

previous frame, the system will detect an error. Specifically, if any of the endpoints falls

outside a radius of 10 pixels from the previous endpoint, the algorithm detects an error

and replaces the current endpoint values with those of the previous frame. To ensure the

system is not caught in a loop of ever-increasing errors, the matrix will reset if the system

detects more than seven errors in a row.

With all of these error-reducing measures combined, the accuracy of the system

improves significantly. Depending on the nature of the operational conditions, the

aircraft, and the camera, the details of the error detection conditions may vary. However,

 50

the framework can be applied universally. The error correction capabilities of the

algorithm are illustrated in Figure 37, where uncorrected and corrected versions of the

same frame are shown side by side.

Figure 37. Uncorrected (left) and Corrected (right) Versions of the Same Runway
Approach Frame

 51

V. RESULTS AND ANALYSIS

This chapter reviews the performance of the runway detection algorithm based on

accuracy and processing time. It will also provide analysis on which operations had the

greatest effect on the overall performance of the algorithm.

A. ACCURACY

The algorithm processed 3000 images from a final approach in a Cessna 206 to

Monterey Regional Airport. In total, this data covers approximately one minute and

40 seconds of flight time. The first and final frames are shown in Figure 38 for visual

reference.

Figure 38. First (left) and Last (right) Images Used for Algorithm Evaluation

This research defines accurate runway detection as identification within a 10-pixel

radius of the true starting or ending points of the runway. For an image taken at medium

range, a 10-pixel shift in the position of both the start and end points could change the

estimated runway angle by three degrees and the estimated runway length by 10 percent.

These are the maximum levels of acceptable variation that could still reasonable lead to

safe landing conditions. Additionally, the runway edge must include no breaks or gaps

along the length of the runway.

In a test of all 3000 frames, the algorithm incorrectly identified the runway in

114 frames, which corresponds to an accuracy of 96.2 percent. Four additional tests

 52

ensured the accuracy of the results. This test also utilized the error correction techniques

of the algorithm. The accuracy of the detection algorithm without the error correction

techniques was 75.9 percent. 722 frames of the original 3000 frames did not meet the

accuracy standards, most of which were frames near the end of the final approach. This

indicates the relative importance of the error correction process. It also indicates the

negative effect that low altitude has on the detection algorithm. At lower altitudes, the

runway consumes more of the image and its shape is comparatively more distorted than

those at higher altitudes.

Frames that led to inaccurate detection of the runway had a few commonalities,

the first of which is being taken from either extremely long or extremely short distances.

The majority of the errors came from frames at the beginning or end of the runway data,

which means that long or short distances and high or low altitudes degrade the

performance of the image processing algorithm. The altitude ranges along the flight path

at which accuracy decreases is shown in Figure 39.

Figure 39. Accuracy Error Related to Altitude and Heading

At long distances, the most likely source of error is noise and environmental

interference. Even in near-perfect visibility conditions, the clearness of the image will

only improve as the distance becomes shorter. For the algorithm, this means that edges

 53

are less delineated and sections of the runway can blend in with the surrounding tarmac

of the airport. At shorter distances, the aircraft is closer to the ground and the view of the

runway is comparatively distorted. Generally, these frames only include the concrete and

asphalt surfaces of the runway and the horizon line. Saturation and value characteristics

become increasingly more important at these distances as a result. Losing differentiation

in hue will undoubtedly result in a loss of accuracy. It is also apparent that the runway

endpoints approach the vanishing point in the image at shorter ranges. As a result, the

endpoints become even more difficult to identify. The image frames that correspond to

the start of processing degradation are shown in Figure 40.

Figure 40. Maximum (left) and Minimum (right)
Distance for Image Processing Degradation

Clutter was also a common factor in incorrectly identified frames. Often larger

and brighter elements near the runway, such as buildings, would pass through the

filtering and morphology steps. If these elements happened to align with one of the

runway edges and they were close enough to the runway surface, the algorithm often

identified the clutter as continuations of the runway edge. Normally, the error correction

process will identify these errors, but sometimes there are no alternative peaks in the

Hough space to replace the false peaks.

There is room for improvement in accuracy, and the level of accuracy will depend

on the application of the algorithm. If the system is intended for use on smaller, easily

controllable aircrafts and large runways, accuracy is not as much of an issue. Application

 54

in an aircraft carrier environment would require nearly perfect accuracy. These are

extensions of the system in which the operator may need to make adjustments to achieve

increased accuracy, but this research proved that the basic framework can operate at a

successful level.

B. PROCESSING TIME

MATLAB scripts and functions are not always conducive for evaluation of real-

time application. An aircraft would never use a MATLAB environment to implement

real-time computer vision and aircraft control. MATLAB functions often call upon

various toolboxes and sub-functions that require additional loading times. Sometimes

MATLAB loads and implements subroutines in C or C++ to execute a function, as is the

case for the filtering operations. However, it is much easier to demonstrate the framework

and methodology in MATLAB. MATLAB can still offer insight and broad implications

for real-time evaluation. Therefore, this discussion will only offer recommendations for

reducing processing time based on MATLAB execution.

Data collected from five approach frames processed five times each revealed

patterns as to which functions and operations consume the most processing time. The

images vary in their distance from the runway to avoid bias due to distance. The “imfill”

function, median filtering, and image sharpening were consistently the top three time-

consuming processes. These are all matrix operations or convolution processes that

must calculate values for every pixel in the image so it is not surprising that they are the

most computationally inefficient. On average, the filling, sharpening, and filtering

operations consume 11.2 percent, 10.5 percent, and 10.2 percent of the total processing

time, respectively.

A possible explanation for the computation time of the “imfill” function is that it

is not a true closing operation. It is a hybrid function that uses a more complex technique

to fill in holes in binary regions of the image (MathWorks 2017a). The algorithm also

uses two iterations of the “imfill” function, further explaining its increased processing

time. While the computation is time consuming, it is still worthwhile to include both

iterations of the morphological operation.

 55

Image filtering is difficult to avoid, but limiting the area that requires filtering is a

good practice for cutting computation time. The equipment used is also vital for the

determination of the level of noise the algorithm must handle. Some cameras can provide

clearer images with less noise, but they will come at a cost. Strategic placement of the

filtering process in the algorithm will ultimately determine its efficiency. If implemented

after all morphological operations and masking, filtering will be much more

computationally efficient.

Image sharpening is the only process that could reasonably be removed from the

algorithm, but only if conditions allow. Again, this is largely a factor of the operating

environment, specifically the visual conditions, and the level of noise due to camera

operations. With these factors reduced below an acceptable level, the algorithm can

reasonably provide accurate results without the sharpening process. However, achieving

those conditions is not easy, and it will likely be expensive. Efficient use of the

sharpening threshold and amount settings can further reduce the computation time if

sharpening is still necessary.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

VI. CONCLUSIONS

This chapter offers a comprehensive review of the research objective and focus,

the framework and methodology of the runway detection algorithm, and results. It also

offers lessons learned from the process and options for future work.

A. REVIEW OF RESEARCH QUESTION

The objective of this research was to conduct a feasibility study for the

application of a runway detection algorithm for use in a vision-based autonomous landing

system via a systems engineering approach. The system should be evaluated on its ability

to detect the edges of a runway and any other relevant runway markings in an accurate,

robust, and cost efficient manner. On a broader scale, this research assesses the feasibility

and application of vision-based control in a broad array of autonomous systems.

However, unmanned aerial vehicles propose a unique challenge to developing robust and

autonomous decision-making systems.

B. CONCLUSIONS

Computer vision can accurately detect and track a runway in the final approach

stages of flight. This research outlined a framework and methodology that proved its

worth with an accuracy of 96.2 percent in final approach testing. Additionally, the

framework supports real-time implementation in an aircraft control system.

Applying computer vision techniques to runway detection and unmanned vehicles

requires a system that is accurate, robust, and computationally efficient. An accurate

algorithm will utilize a multi-stage approach that constantly works to localize the runway

region and eliminate noise and clutter. The algorithm should also utilize error detection

and correction techniques to avoid false positives or misidentification of runway edges.

These layers of image processing steps add an aspect of redundancy to the algorithm and

improve overall performance.

A robust algorithm will be able to work at all distances expected in the operating

environment, through various levels of noise, and in a degraded visual environment. It is

 58

easy to construct an algorithm that will detect a runway in a very limited set of

circumstances. The challenge lies in designing a system unaffected by external factors.

Hue, Saturation, and value thresholding is a convenient way to increase robustness

because it allows the algorithm to use more than just the intensity characteristic to

localize the runway at limited computational expense. The more data available to the

system, the more accurate it can be. Median filtering is also an efficient way to reduce

Gaussian, salt and pepper, and quantization noise that will undoubtedly be present in an

image. Combining these strategies will increase the operating range of the system.

Lastly, a computationally efficient algorithm will accurately detect the runway

edges in the minimum amount of time, ideally for implementation in real-time. If the

algorithm limits the amount of noise and clutter in an image, it will reduce the

computation time for operations that require convolution and other complicated

procedures like the Hough transform. It is acceptable to sacrifice accuracy in favor of

computation time if the results are still reasonably in the desired range, as is the case with

using the Sobel operator instead of the more accurate Canny method. This framework

strikes a delicate balance between efficiency and accuracy.

C. FUTURE WORK

Future work would primarily include implementation of pose and attitude

estimation as well as the development of a full aircraft control system with visual

feedback as outlined in Chapter I. By doing so, the feasibility study could be extended to

the complete vision-based landing system.

While this thesis conducted a thorough description and analysis of the image

processing system within the constraints of the available data, the system still requires

additional testing. Specifically, future work should collect data from a wide variety of

runways and geographic locations to test the effects of background and clutter on the

accuracy of the algorithm. Additional testing should also cover various light levels,

degraded environmental conditions, different types of aircraft, varying speed, and varying

glide slopes. If the landing system is to be truly robust, it must successfully operate in all

of these conditions.

 59

While the results of the thesis have proven that a vision-based landing system is at

least partially feasible, they also indicate that the runway detection algorithm struggles at

extremely long and short ranges. If this vision-based approach is to be pursued, future

work must focus on achieving accurate results at both long and short ranges. Perhaps the

solution to this issue lies in adapting the algorithm itself. The system could also possibly

use integrated sensors such as altimeters or range finders to increase accuracy.

Regardless, further development and analysis is required to increase the range of the

system.

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

APPENDIX. HSV AND GRAYSCALE PROCESSING TIMES

Trial Grayscale Time (s) HSV Time (s)

1 0.168 0.072

2 0.151 0.043

3 0.158 0.040

4 0.195 0.043

5 0.195 0.046

6 0.185 0.050

7 0.190 0.058

8 0.194 0.047

9 0.265 0.053

10 0.192 0.052

11 0.195 0.048

12 0.231 0.055

13 0.192 0.052

14 0.294 0.047

15 0.187 0.048

16 0.178 0.047

17 0.194 0.048

18 0.227 0.054

19 0.184 0.057

20 0.193 0.047

21 0.197 0.047

22 0.189 0.054

23 0.210 0.073

 62

Trial Grayscale Time (s) HSV Time (s)

24 0.191 0.046

25 0.192 0.051

26 0.193 0.052

27 0.201 0.046

28 0.204 0.046

29 0.186 0.048

30 0.202 0.048

AVG: 0.198 0.051

STDEV: 0.027536 0.007243

VAR: 0.000758 5.25E-05

 63

LIST OF REFERENCES

AirNav. 2017. “KMRY Monterey Regional Airport.” AirNav, LLC, April 27. Accessed
May 24, 2017. http://www.airnav.com/airport/KMRY.

Cambridge in Colour. 2017. “Sharpening using an Unsharp Mask.” Accessed April 19,
2017. http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm.

Cheng, H. D., X. H. Jiang, Y. Sun, and Jingli Wang, 2001. "Color Image Segmentation:
Advances and Prospects." International Journal on Image, Graphics, and Signal
Processing 34, no. 12 (February): 28-34. Accessed May 18, 2017.
http://www.sciencedirect.com/science/article/pii/S0031320300001497.

Dangeti, Sarita Veera. 2003. “Denoising Techniques—A Comparison.” Master’s thesis,
Louisiana State University. Accessed April 12, 2017.
http://etd.lsu.edu/docs/available/etd-1219102-
152426/unrestricted/Dangeti_thesis.pdf.

Defense Standardization Program. 2010. “Case Study: Joint Precision Approach and
Landing System.” Defense Standardization Program Office: Fort Belvoir, VA.
Accessed 15 April, 2017. http://quicksearch.dla.mil/Transient/-
E13A9F9381654210B19578B7AE99B036.pdf.

Dougherty, Edward R., and Roberto A. Lotufo. 2003. Tutorial Texts in Optical
Engineering, Vol. 59, Hands-on Morphological Image Processing. Bellingham,
WA: SPIE Press. Accessed April 13, 2017.
http://ebooks.spiedigitallibrary.org.libproxy.nps.edu/book.aspx?bookid=159.

Duda, Richard O., and Peter E. Hart. 1971. “Use of the Hough Transformation to Detect
Lines and Curves in Pictures.” Communications of the ACM 15, no. 1 (January):
11–15. Accessed 17 April, 2017. http://www.dtic.mil/docs/citations/ADA457992.

Federal Aviation Administration (FAA). 2013. Advisory Circular 150/5340-1L:
Standards for Airport Markings. US Department of Transportation. Accessed
April 6, 2017. https://www.faa.gov/documentLibrary/media/Advisory_Circular
/150_5340_1l.pdf.

———. 2014. “Ground-Based Navigation - Low Power Distance Measuring Equipment
(LPDME).” US Department of Transportation, March 25. Accessed May 23,
2017.
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/tech
ops/navservices/gbng/lpdme/.

 64

———. 2016a. Airplane Flying Handbook Chapter 8. US Department of Transportation,
Oklahoma City. Accessed May 23, 2017.
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/airplane_h
andbook/media/10_afh_ch8.pdf.

———. 2016b. “Instrument Landing System (ILS).” US Department of Transportation,
December 20. Accessed 23 May, 2017.
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/tech
ops/navservices/gbng/ils/.

Federal Aviation Administration Southern Region Airports Division. 2015. A Quick
Reference to Airfield Standards. US Department of Transportation. Accessed
April 6, 2017.https://www.faa.gov/airports/southern/airport_safety/
part139_cert/media/aso-airfield-standards-quick-reference.pdf.

Fleet Readiness Center Southwest Public Affairs. “North Island Depot Supports New
Landing System.” Naval Air Systems Command. Accessed May 23, 2017.
http://www.navair.navy.mil/index.cfm?fuseaction=home.NAVAIRNewsStory&id
=2489.

Gloria, Jose R. Espinosa. 2016. “Runway Detection from Map, Video, and Aircraft
Navigational Data.” Master’s thesis, Naval Postgraduate School. Accessed 19
April, 2017. http://calhoun.nps.edu/bitstream/handle/10945/48516/16Mar_
Espinosa_Gloria_Jose.pdf?sequence=1&isAllowed=y.

Golovcsenko, Igor V. 1976. Computer Simulation of Fresnel Lens Optical Landing
System. Orlando, FL: Naval Training Equipment Center. Accessed May 23, 2017.
http://www.dtic.mil/dtic/tr/fulltext/u2/a038456.pdf.

Hough, P. V. C. 1962. Method and Means for Recognizing Complex Patterns. U.S.
Patent 3,069,654, filed March 25, 1960, and issued December 18, 1962.

Joblove, George H., and Donald Greenberg. 1978. “Color Spaces for Computer
Graphics.” ACM SIGGRAPH Computer Graphics 12, no. 3 (August 23): 20–25.
Accessed April 11, 2017. http://dl.acm.org/citation.cfm?doid=800250.807502.

Kirsch, R. A., L. Cahn, C. Ray, and G. H. Urban. 1957. “Experiments in Processing
Pictorial Information with a Digital Computer.” IRE-ACM-AIEE ‘57 (Eastern)
Papers and Discussions Presented at the December 9–13, 1957,Eastern Joint
Computer Conference: Computers with Deadlines to Meet. New York:
Association for Computing Machinery.

Loegering, Greg and Steve Harris. 2002. "Landing Dispersion Results - Global Hawk
Auto-Land System." AIAA’s 1st Technical Conference and Workshop on
Unmanned Aerospace Vehicles, Norfolk, VA. May 20-23, 2003. Accessed May
9,2017. https://arc.aiaa.org/doi/pdf/10.2514/6.2002-3457.

 65

Maini, Raman, and Himanshu Aggarwal. 2009. “Study and Comparison of Various
Image Edge Detection Techniques.” International Journal of Image Processing 3,
no. 1 (March 1): 1–11. Accessed April 19, 2017.
https://doaj.org/article/3358147a5a91426fad63f55fa8eacfa8.

MathWorks. 2017a. “imfill.” Accessed April 14, 2017. The MathWorks Inc.
https://www.mathworks.com/help/images/ref/imfill.html.

———. 2017b. “bwareaopen.” Accessed April 14, 2017. The MathWorks Inc.
https://www.mathworks.com/help/images/ref/bwareaopen.html.

———. 2017c. “medfilt2.” Accessed April 14, 2017. The MathWorks Inc.
https://www.mathworks.com/help/images/ref/medfilt2.html.

———. 2017d. “imsharpen.” Accessed April 14, 2017. The MathWorks Inc.
https://www.mathworks.com/help/images/ref/imsharpen.html.

———. 2017e. “edge.” Accessed April 14, 2017. The MathWorks Inc.
https://www.mathworks.com/help/images/ref/edge.html.

———. 2017f. “hough.” Accessed April 14, 2017. The MathWorks Inc.
https://www.mathworks.com/help/images/ref/hough.html.

———. 2017g. “houghpeaks.” Accessed April 14, 2017. The MathWorks Inc.
https://www.mathworks.com/help/images/ref/houghpeaks.html

———. 2017h. “houghlines.” Accessed April 14, 2017. The MathWorks Inc.
https://www.mathworks.com/help/images/ref/houghlines.html

———. 2017i. “Morphological Dilation and Erosion.” Accessed May 15, 2017. The
MathWorks Inc. https://www.mathworks.com/help/images/ref/imfill.html.

Northrop Grumman, 2017. “Global Hawk.” Access 8 May 2017. Northrop Grumman
Corporation. http://www.northropgrumman.com/Capabilities/GlobalHawk/Pages/
default.aspx.

———. 2015. “X-47B UCAS: Unmanned Combat Air System.” Northrop Grumman
Systems Corporation, San Diego. Accessed May 9, 2017.
http://www.northropgrumman.com/Capabilities/X47BUCAS/Documents/UCAS-
D_Data_Sheet.pdf.

Office of Technical Intelligence. 2015. Department of Defense Research and Engineering
Technical Assessment: Autonomy. Office of the Assistant Secretary of Defense for
Research & Engineering, Washington, DC. Accessed May 23, 2017.
http://www.defenseinnovationmarketplace.mil/resources/OTI_TechnicalAssessme
nt-AutonomyPublicRelease_vF.pdf.

 66

Patidar, Pawan, Manoj Gupta, Sumit Srivastava, and Ashok Kumar Nagawat. 2010.
“Image De-Noising by various Filters for Different Noise.” International Journal
of Computer Applications 9, no. 4 (November 10): 45–50. Accessed April 8,
2017. http://search.proquest.com/docview/814856118.

Quijas, Jonathan, and Olac Fuentes. 2014. “Removing JPEG Blocking Artifacts using
Machine Learning.” 2014 IEEE Southwest Symposium on Image Analysis and
Interpretation. San Diego: IEEE.

Shang, Jiajia, and Zhongke Shi. 2007. “Vision-Based Runway Recognition for
Autonomous UAV Landing.” IJCSNS International Journal of Computer Science
and Network Security 7 no. 3: 112–117. Accessed April 7, 2017.
http://www.sciencedirect.com/science/article/pii/S1877705812021844.

Smith, Alvy Ray. 1978. “Color Gamut Transform Pairs.” ACM SIGGRAPH Computer
Graphics 12, no. 3 (August 23): 12–19. Accessed April 11, 2017.
http://dl.acm.org/citation.cfm?id=807361.

Sobel, I., and G. Feldman. 1968. “An Isotropic 3x3 Image Gradient Operator.” Lecture,
Stanford Artificial Intelligence Project. Accessed April 19, 2017.
https://www.researchgate.net/publication/239398674_An_Isotropic_3_3_Image_
Gradient_Operator.

US Department of Defense. 2011. Unmanned Systems Integrated Roadmap FY2011-
2036. Office of the Under Secretary of Defense Acquisition, Technology, and
Logistics. Washington, DC. Accessed May 23. 2017.
http://www.acq.osd.mil/sts/docs/Unmanned%20Systems%20Integrated%20Road
map%20FY2011-2036.pdf.

 67

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

